Leptogenesis with Minimal Flavor Violation

Vincenzo Cirigliano

Theoretical Division, Los Alamos National Laboratory

Outline

Introduction: neutrinos, LFV & Leptogenesis

 LFV & Leptogenesis within models satisfying the "Minimal Flavor Violation" hypothesis

VC, B. Grinstein, G. Isidori, M. Wise, Nucl.Phys. B 728 (2005) 121 (hep-ph/0507001) VC, G. Isidori and V. Porretti, Nucl.Phys. B 763 (2007) 228 (hep-ph/0607068)

"Hot" recent developments ("flavor" and "memory")
 and their impact on MFV-leptogenesis

Introduction: neutrinos, LFV & Leptogenesis

Connecting LFV, CPV and BAU

$$\mathcal{L} \supset \frac{1}{2} \frac{(M_R)_{ij}}{\sqrt{N_R}} \nu_R^{Ti} C \nu_R^j - \lambda_{\nu}^{ij} \bar{\nu}_R^i (H_c^{\dagger} L_L^j) + \text{h.c.}$$

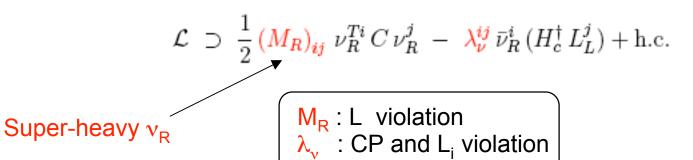
Super-heavy v_R

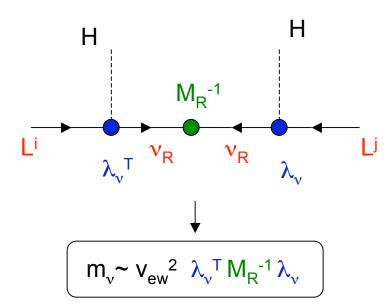
M_R: L violation λ_ν: CP and L_i violation

Ŋ.

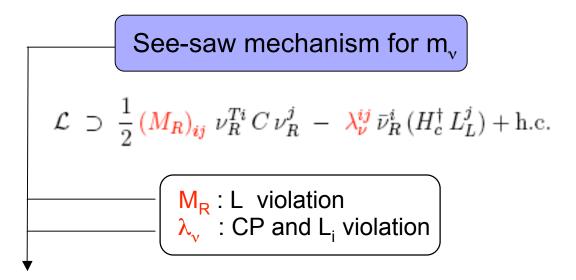
Connecting LFV, CPV and BAU

See-saw mechanism for m_{ν}





Connecting LFV, CPV and BAU



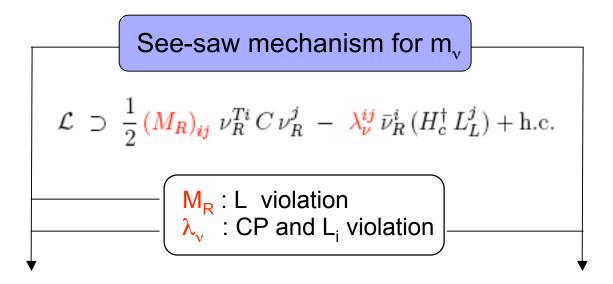
1) $\mathscr{L}P$ and \mathscr{L} out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_L

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \bar{l}_k H)$$

2) B+L violation (sphalerons) ⇒

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

Connecting LFV, CPV and BAU



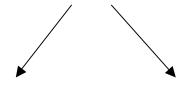
1) $\mathscr{L}P$ and \mathscr{L} out-of-equilibrium decays of N_i (T ~ M_R) \Rightarrow n_L

$$\Gamma(N_i \to l_k H^*) \neq \Gamma(N_i \to \bar{l}_k H)$$

2) B+L violation (sphalerons) ⇒

$$\eta_B \equiv \frac{n_B}{n_\gamma} \neq 0$$

If CP & L_i violation is communicated to particles with mass Λ~TeV

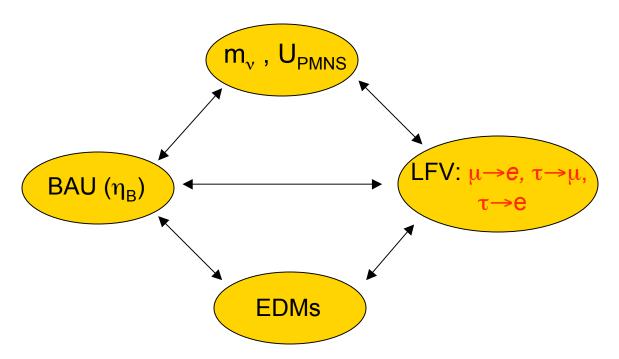


Observable LFV

Observable lepton EDMs

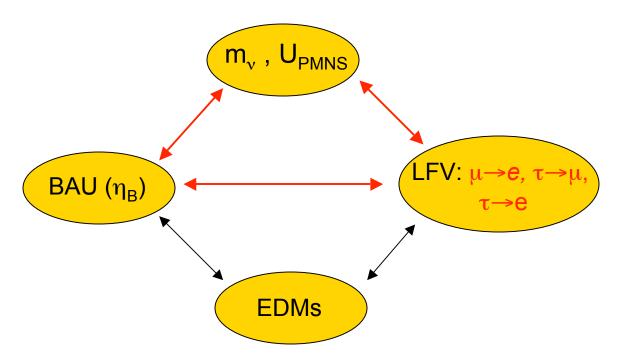
Key questions

Can we identify signatures for the see-saw scenario?



Key questions

Can we identify signatures for the see-saw scenario?



In this talk, I discuss (some of) these correlation in the context of MFV

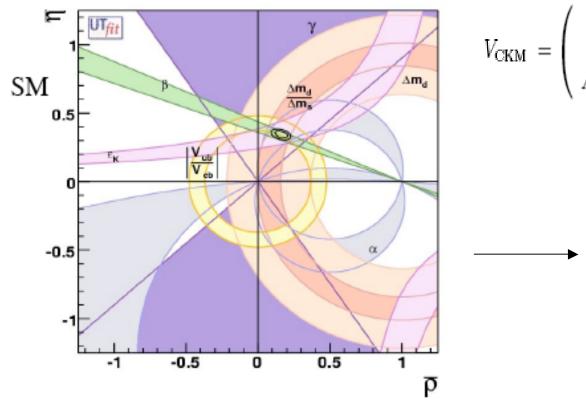
Minimal Flavor Violation

The "Flavor Problem":

■ Clash between theoretical expectation of "new physics" at the ~TeV scale and experimental observations in rare FCNC processes (K, B, μ , τ)

The "Flavor Problem":

- Clash between theoretical expectation of "new physics" at the ~TeV scale and experimental observations in rare FCNC processes (K, B, μ , τ)
- Quark Sector: the unreasonable success of the CKM paradigm!



$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

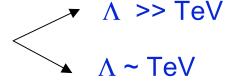
$$\Lambda_{NP} > 10^{3-4} \text{ TeV}$$

Lepton sector: severe constraints from FCNC of charged leptons

$$\mu \xrightarrow{\tilde{\mathbf{p}}} \tilde{\mathbf{p}} \xrightarrow{\tilde{\mathbf{p}}} \tilde{\mathbf{p}} \qquad \longleftrightarrow \qquad C_{\mu e} \frac{v_{\rm ew}}{\Lambda^2} \; \bar{\mu}_R \; \sigma^{\mu\nu} \; e_L \; F_{\mu\nu}$$

$$[\mu \to e \; \gamma \; \text{in SUSY}]$$

$$BR(\mu \to e\gamma) < 1.2 \times 10^{-11}$$
 \longrightarrow $\Lambda/\sqrt{C_{\mu e}} > 2 \times 10^4 \,\mathrm{TeV}$
(95% C.L.)



 $\Lambda >> \text{TeV}$ [at least for "flavored" d.o.f., $\Lambda_{\text{FV}} \sim 10^{3-4} \text{ TeV}$]

Effective operators reflect underlying symmetry

Effective operators reflect underlying symmetry

What type of symmetry?

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{Gauge}}[\psi_i, A_k] + \mathcal{L}_{\text{Higgs}}[H, A_k, \psi_i; \mathbf{v}, \boldsymbol{\lambda}] + \sum_{d \geq 5} \frac{c_n^{(d)}}{\Lambda^{d-4}} O_n^{(d)}[\psi_i, A_k, H]$$
Georgi-Chivukula 1987

Hall-Randall 1990 Buras et al 2001

D'Ambrosio et al 2002

- L_{SM}: no exact flavor symmetry!
- $G_F = U(3)^5$ (invariance of \mathcal{L}_{Gauge}) is broken by Yukawa couplings **

What type of symmetry?

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{Gauge}}[\psi_i, A_k] + \mathcal{L}_{\text{Higgs}}[H, A_k, \psi_i; \frac{\mathbf{v}}{\mathbf{v}}, \frac{\lambda}{\lambda}] + \sum_{d>5} \frac{c_n^{(d)}}{\frac{\Lambda}{d-4}} O_n^{(d)}[\psi_i, A_k, H]$$

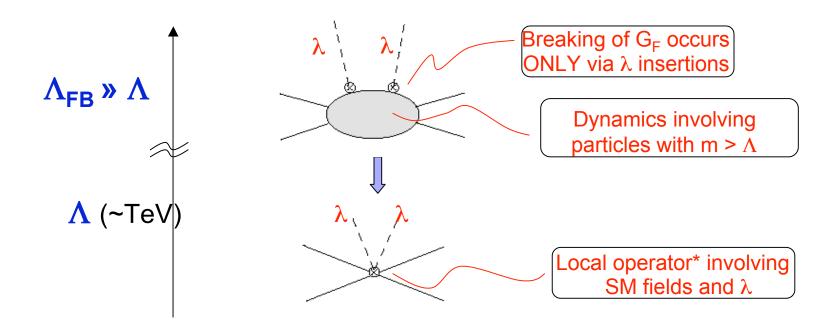
Georgi-Chivukula 1987 Hall-Randall 1990 Buras et al 2001 D'Ambrosio et al 2002

- L_{SM}: no exact flavor symmetry!
- $G_F=U(3)^5$ (invariance of \mathcal{L}_{Gauge}) is broken by Yukawa couplings **

$$\left[\begin{array}{ccc} \bar{Q}_L^i \; \boldsymbol{\lambda}_D^{ij} \; d_R^j \, H & \bar{Q}_L^i \; \boldsymbol{\lambda}_U^{ij} \; u_R^j \, H_c & \bar{L}_L^i \; \boldsymbol{\lambda}_e^{ij} \; e_R^j \, H \end{array} \right]$$

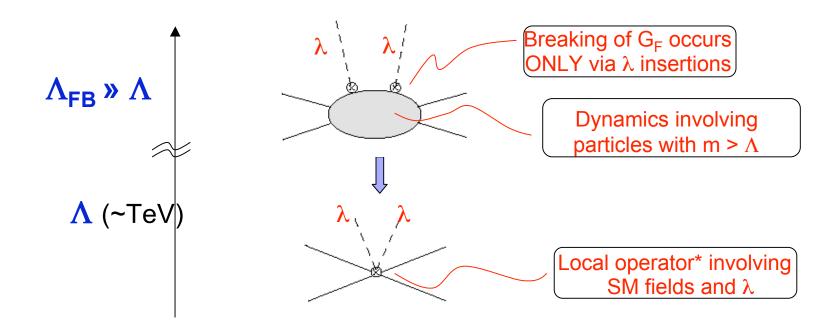
- $O_n^{(d)}$: most conservative guess is Minimal Flavor Violation Hypothesis: "The only sources of G_F -breaking are proportional to the mass matrices: λ_U , λ_D , λ_e , ..."
 - Can be implemented in explicit models (SUSY, technicolor, extra-dims)
 - Can be formulated in EFT language (insensitive to model details)

MFV and effective theory



Ŋ4

MFV and effective theory

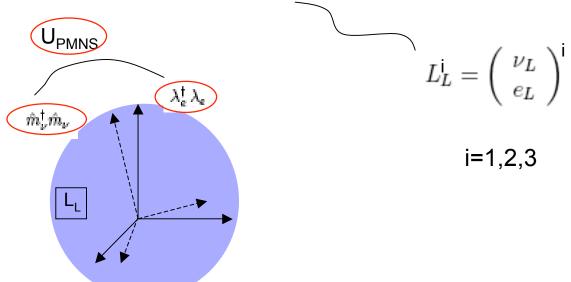


Rules of the game:

- 1. Identify flavor symmetry group G_F
- 2. Identify sources of symmetry breaking (λ) and their properties as spurions
- 3. Construct local operators [SM fields and λ] formally invariant under G_F

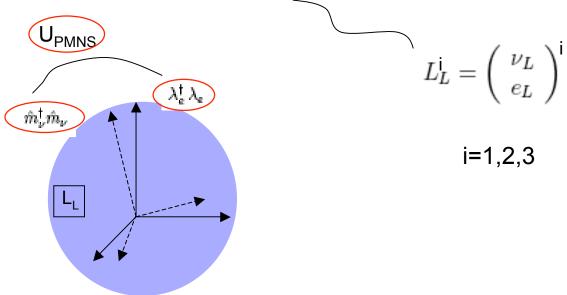
MFV hypothesis in the lepton sector

m_v and m_l select two distinct eigen-bases in L_L space (related by U_{PMNS})



MFV hypothesis in the lepton sector

m_v and m_l select two distinct eigen-bases in L_L space (related by U_{PMNS})

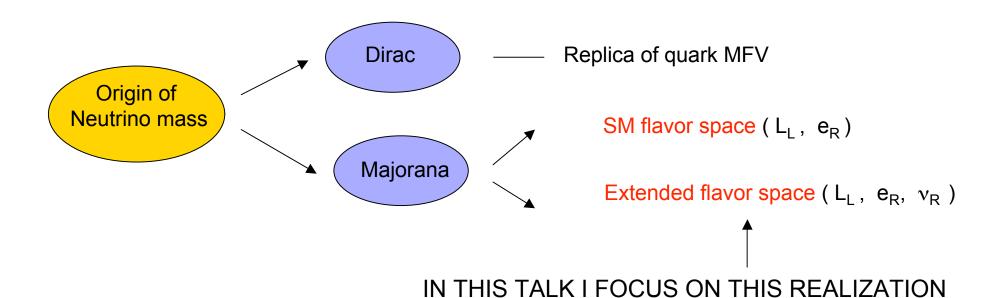


- MFV(ℓ): BSM flavor structures are aligned with m_v and m_l in L_L space
 [→ FCNC are controlled by masses and U_{PMNS}]
 - 1. Is leptonic "flavor problem" solved?
 - 2. What are the experimental signatures?
 - 3. Can we have leptogenesis?

 MFV in the lepton sector defines a constrained class of models, with distinct phenomenological signatures

Model-independent tool to investigate sources of flavor breaking

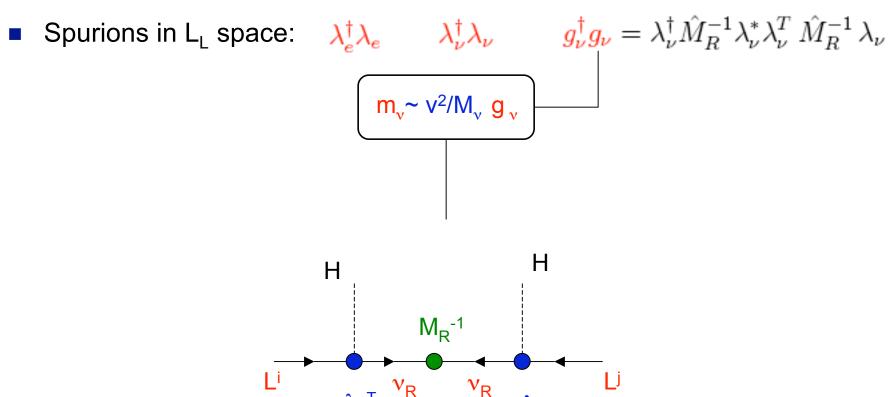
Even with our restrictive definition, several options are available:



м

MFV in models with heavy v_R

Will v ill lilodels with heavy v_F



MFV in models with heavy v_R

• Strict MFV definition (alignment of $\lambda_{\nu}^{\dagger}\lambda_{\nu}$ and $g_{\nu}^{\dagger}g_{\nu}$) \Rightarrow

$$\hat{M}_R = I \qquad \lambda_\nu = \lambda_\nu^*$$

Highly predictive, but excludes possibility of CP violation in R-handed sector!

٧ė

MFV in models with heavy v_R

• Strict MFV definition (alignment of $\lambda_{\nu}^{\dagger}\lambda_{\nu}$ and $g_{\nu}^{\dagger}g_{\nu}$) \Rightarrow

$$\hat{M}_R = I \qquad \lambda_\nu = \lambda_\nu^*$$

Highly predictive, but excludes possibility of CP violation in R-handed sector!

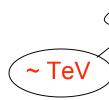
- lacksquare Lift the requirement $\left(\lambda_
 u=\lambda_
 u^*
 ight)$
 - scenario similar to quark MFV: flavor broken only by Yukawas (λ_e , λ_v)
 - now have three distinct flavor-breaking structures in L₁ flavor space

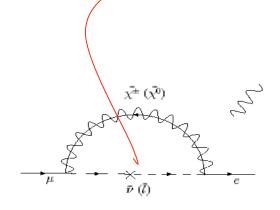
Phenomenology of $\ell_i \rightarrow \ell_i \gamma$

■ Effective coupling governing \(\ell_i \rightarrow \ell_i\) transitions:

$$\Delta_{ ext{FC}} = \lambda_
u^\dagger \lambda_
u$$

$$H_{\text{eff}} = \frac{C_L}{\Lambda^2} H^{\dagger} \bar{e}_R^i \sigma^{\mu\nu} \left(\frac{\lambda_e \Delta_{FC}}{\Delta_{FC}} \right)^{ij} L_L^j F_{\mu\nu} + \dots$$

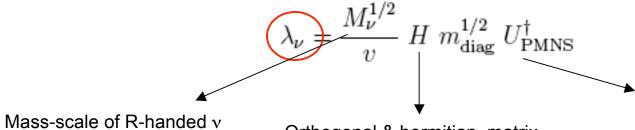




Phenomenology of $\ell_i \rightarrow \ell_i \gamma$

■ Effective coupling governing \(\ell_i \rightarrow \ell_i\) transitions:

$$\Delta_{\rm FC} = \lambda_{\nu}^{\dagger} \lambda_{\nu}$$



Observed neutrino mass and mixing matrix

Orthogonal & hermitian matrix containing CP violating phases

$$H=e^{i\,\Phi}$$
 $\Phi=\left(egin{array}{ccc}0&\phi_1&\phi_2\-\phi_1&0&\phi_3\-\phi_2&-\phi_3&0\end{array}
ight)$

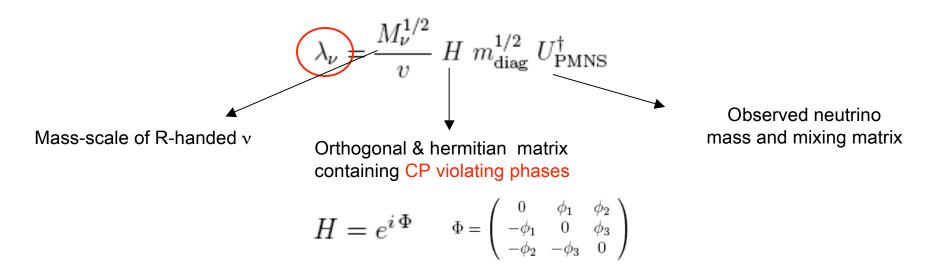
Direct link to neutrino phenomenology lost unless H=I (CP limit)

ŊΑ

Phenomenology of $\ell_i \rightarrow \ell_i \gamma$

■ Effective coupling governing \(\ell_i \rightarrow \ell_i\) transitions:

$$\Delta_{\mathrm{FC}} = \lambda_{\nu}^{\dagger} \lambda_{\nu}$$



- Direct link to neutrino phenomenology lost unless H=I (CP limit)
- However, H contains the CPV phases controlling leptogenesis → explore correlations between successful leptogenesis and FCNC

$$\Delta_{FC} \equiv \lambda_{\nu}^{\dagger} \lambda_{\nu} = \frac{M_{\nu}}{v^2} U_{PMNS} \hat{m}_{\nu}^{1/2} H^2 \hat{m}_{\nu}^{1/2} U_{PMNS}^{\dagger}$$

$$\longrightarrow \Delta_{CP} \equiv \lambda_{\nu} \lambda_{\nu}^{\dagger} = \frac{M_{\nu}}{v^2} H \hat{m}_{\nu} H$$

NA.

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$ (CP limit)

$$B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\text{min}}; \Delta m_{\nu}^2)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}$$

Investigate: (i) overall normalization and

(ii) MFV signatures
$$\longleftrightarrow$$
 $b_{ij} = (U \frac{m_v}{v_{ew}} U^T)_{ij}$

Ŋ.

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$ (CP limit)

$$B_{\ell_{i} \to \ell_{j} \gamma} = \frac{v^{2} M_{\nu}^{2}}{\Lambda^{4}} \times |b_{ij}(U_{\text{PMNS}}; m_{\text{min}}; \Delta m_{\nu}^{2})|^{2} \times |c_{RL}^{(1-2)}|^{2} I_{PS}$$

- ia) Flavor problem "solved" for $M_v < 10^{12-13} \, \text{GeV}$ (normalization of g_v and λ_v)
- ib) Signals within reach of future facilities are expected only for large hierarchy between scale of U(1)_{IN} breaking and Λ

$$B_{\mu \to e(\gamma)} \sim 10^{-13}$$
 \Leftrightarrow $M_{\nu} \sim 10^{12} \, \mathrm{GeV} \times \left(\Lambda/10 \, \mathrm{TeV}\right)^2$ $c_{\rm i} \sim {\rm O(1)}$

Ŋ4

Phenomenology of $\ell_i \rightarrow \ell_j \gamma$ (CP limit)

$$B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\text{min}}; \Delta m_{\nu}^2)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}$$

- ia) Flavor problem "solved" for $M_v < 10^{12-13} \, \text{GeV}$ (normalization of g_v and λ_v)
- ib) Signals within reach of future facilities are expected only for large hierarchy between scale of U(1)_{IN} breaking and Λ

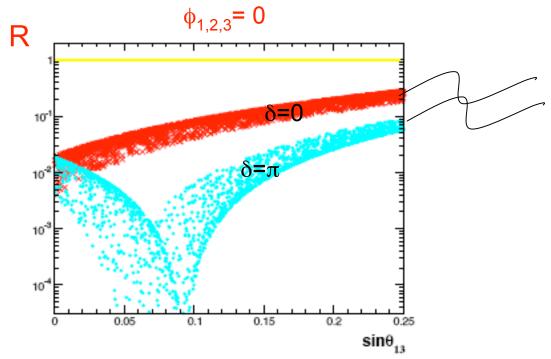
$$B_{\mu \to e(\gamma)} \sim 10^{-13}$$
 \Longrightarrow $M_{\nu} \sim 10^{12} \, \mathrm{GeV} \times \left(\Lambda/10 \, \mathrm{TeV}\right)^2$ $c_{\mathrm{i}} \sim \mathrm{O(1)}$

ii) MLFV *predicts* ratios of $B(\ell_a \rightarrow \ell_b \gamma)$ (c_{RL} and Λ cancel out) in terms of U_{PMNS} and mass splittings with pattern:

$$B(\tau \rightarrow \mu \gamma) >> B(\tau \rightarrow e \gamma) \sim B(\mu \rightarrow e \gamma)$$

(with $\mu \rightarrow e/\tau \rightarrow \mu$ suppression increasing as $s_{13} \rightarrow 0$)

Illustration: R= B($\mu \rightarrow e \gamma$)/B($\tau \rightarrow \mu \gamma$)



Pattern entirely determined by:

-
$$\Delta m^2_{atm} >> \Delta m^2_{sol}$$

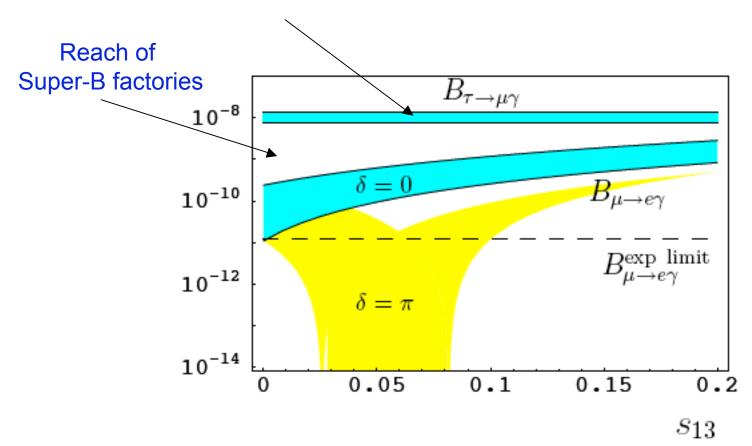
-
$$\theta_{atm}$$
, $\theta_{sol} >> \theta_{13}$

$$b_{ij} = (U \frac{m_v}{v_{ew}} U^T)_{ij}$$

This framework can be tested!

- If $s_{13} \ge 0.08$, limits on $B(\tau \rightarrow \mu \gamma)$ preclude observing $\tau \rightarrow \mu \gamma$ at B factories
- If $\tau \rightarrow \mu \gamma$ is observed at B factories then $s_{13} < 0.08$

Reach of B factories



MFV with CP violation

- So far I discussed phenomenology in the limit of CP symmetry (reduced number of parameters, allowing for predictive power!)
- Now lift the assumption of CP and investigate:
- 1. Viability of thermal leptogenesis if the only sources of flavor breaking are λ_e and λ_v (non trivial by itself)
- 2. Leptogenesis constraints on λ_{ν} and M_{ν} and impact on FCNC
 - Is the framework predictive?
 - Do we learn something about overall rate and relative strength of $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow e\gamma$?

Leptogenesis with MFV

Leptogenesis accounts for
$$\eta_B = \frac{n_B - n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$$
 through:

- Out of equilibrium decays of N_i in presence of $CPV \Rightarrow n_i \neq 0$
- EW sphalerons (B+L violation) convert n_L ↔ n_B

$$\eta_B = \frac{a_{sph}}{n_{\gamma}} \sum_i \varepsilon_i \times d_i + \dots$$

- a_{sph} O(1) factor governing conversion $n_L \leftrightarrow n_B$
- Fraction of N_i decaying out of equilibrium (from solution of appropriate Boltzmann Eqs)
- $[\mathcal{E}_i]$ CP asymmetry

Leptogenesis with MFV

Leptogenesis accounts for
$$\eta_B = \frac{n_B - n_B}{n_\gamma} = (6.3 \pm 0.3) \times 10^{-10}$$
 through:

- Out of equilibrium decays of N_i in presence of CPV ⇒ n_L≠0
- EW sphalerons (B+L violation) convert n_L ↔ n_B

$$\eta_B = \frac{a_{sph}}{n_{\gamma}} \sum_i \varepsilon_i \times d_i + \dots$$

No detailed input

on UV physics

O(1) uncertainty

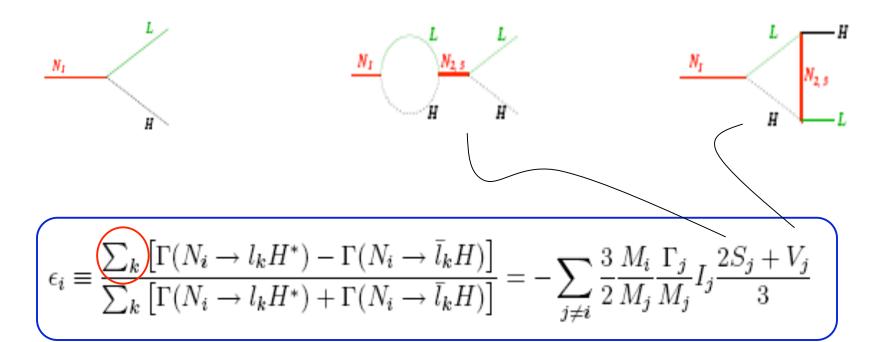
- a_{sph} O(1) factor governing conversion $n_L \leftrightarrow n_B$
- d_i Fraction of N_i decaying out of equilibrium (from solution of appropriate Boltzmann Eqs)
- $\left[\mathcal{E}_{i}^{-}\right]$ CP asymmetry

- A number of questions can be addressed without reference to UV details:
 - a) Structure of CP asymmetries in v_R decays into H + L_L
 - b) Structure of radiatively induced v_R mass splitting
 - c) Is there enough CP violation for leptogenesis, *in principle*? (find non-zero CP violating weak-basis invariants)

• Within SM + v_R particle content, we can perform numerical estimates, to understand gross features of FCNC under successful leptogenesis

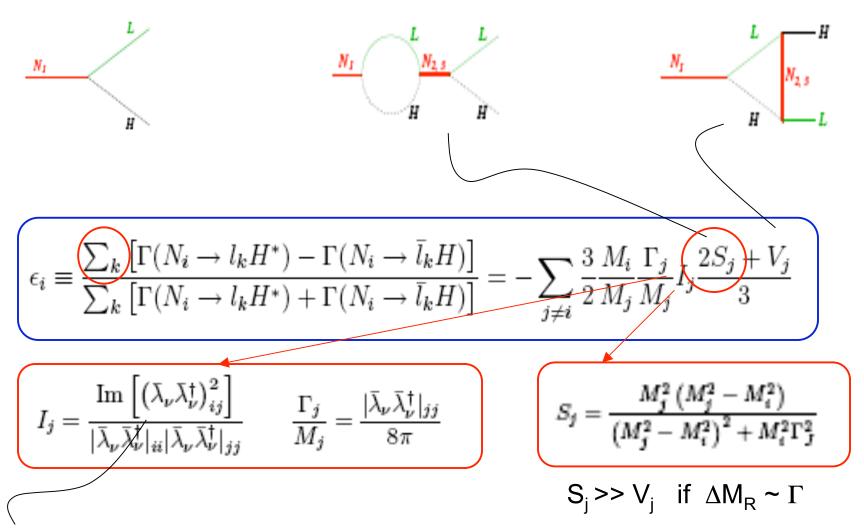
Ŋ.

a) CP asymmetries in v_R decays



M

a) CP asymmetries in v_R decays



 $\bar{\lambda}_{\nu}$: Yukawa in the basis where M_R is diagonal with eigenvalues M_{1,2,3}

b) v_R mass splitting induced according to MLFV

$$M_R = M_R^{(0)} + \sum c_n \ \delta M_R^{(n)}$$

$$(M_R^{(0)})_{ij} = M_\nu \ \delta_{ij}$$
 Combinations of Yukawas allowed by MFV

$$\delta M_R^{(11)} = M_{\nu} \left[\lambda_{\nu} \lambda_{\nu}^{\dagger} + (\lambda_{\nu} \lambda_{\nu}^{\dagger})^T \right] ,$$

$$\delta M_R^{(21)} = M_{\nu} \left[\lambda_{\nu} \lambda_{\nu}^{\dagger} \lambda_{\nu} \lambda_{\nu}^{\dagger} + (\lambda_{\nu} \lambda_{\nu}^{\dagger} \lambda_{\nu} \lambda_{\nu}^{\dagger})^T \right] ,$$

$$\delta M_R^{(22)} = M_{\nu} \left[\lambda_{\nu} \lambda_{\nu}^{\dagger} (\lambda_{\nu} \lambda_{\nu}^{\dagger})^T \right] ,$$

$$\delta M_R^{(23)} = M_{\nu} \left[(\lambda_{\nu} \lambda_{\nu}^{\dagger})^T \lambda_{\nu} \lambda_{\nu}^{\dagger} \right] ,$$

$$\delta M_R^{(24)} = M_{\nu} \left[\lambda_{\nu} \lambda_{e}^{\dagger} \lambda_{e} \lambda_{\nu}^{\dagger} + (\lambda_{\nu} \lambda_{e}^{\dagger} \lambda_{e} \lambda_{\nu}^{\dagger})^T \right] ,$$

$$\delta M_R^{(31)} = \dots$$

Perturbative regime
$$\Rightarrow c_{11} \sim g_{\text{eff}}^2/(4\pi)^2, c_{2i} \sim c_{11}^2, \dots$$

Strongly-interacting regime \Rightarrow all $c_n \sim \mathcal{O}(1)$

- c) Is there enough CP violation for leptogenesis, in principle?
- Yukawa sector: six independent physical CPV phases (three if $\lambda_e = 0$)
- Can be characterized in terms of weak-basis invariants (insensitive to changes of basis or re-phasing of the fields). Simplest invariants:

Branco-Morozumi-Nobre-Rebelo 2001

- c) Is there enough CP violation for leptogenesis, in principle?
- Yukawa sector: six independent physical CPV phases (three if $\lambda_e = 0$)
- Can be characterized in terms of weak-basis invariants (insensitive to changes of basis or re-phasing of the fields). Simplest invariants:

Branco-Morozumi-Nobre-Rebelo 2001

- c) Is there enough CP violation for leptogenesis, in principle?
- Yukawa sector: six independent physical CPV phases (three if $\lambda_e = 0$)
- Can be characterized in terms of weak-basis invariants (insensitive to changes of basis or re-phasing of the fields). Simplest invariants:

Branco-Morozumi-Nobre-Rebelo 2001

- $B_i \neq 0$ if use any of the $\delta M_R^{(2n)}$ splittings (quartic in the Yukawa!)

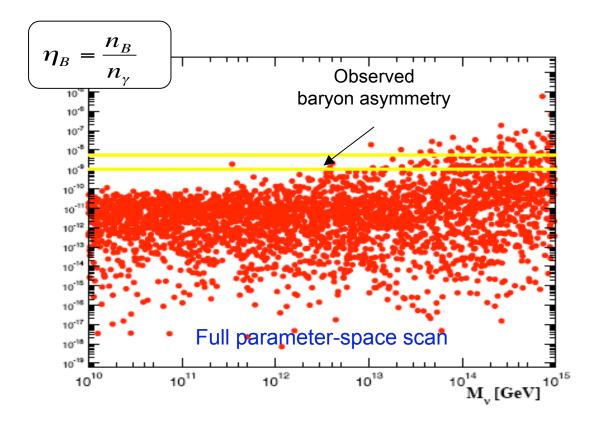
Parameter space scan:

```
\delta M_R: flavor structures; size of coefficients: c \in [10^{-4}, 1]
```

- $M_v \in [10^5, 10^{15}]$ GeV $\phi_{1,2,3} \in [0.001, 1]$
- $m_v^{min} \in [10^{-4}, 0.6] \text{ eV}$
- $\theta_{13} \in [0^{\circ}, 15^{\circ}]$

Leptogenesis highlights:

- Leptogenesis is possible in MFV! ("Radiative resonant leptogenesis")
- Key feature: high values of $M_v > 10^{12}$ GeV and $|\phi_{1,2,3}| \ge 0.01$ preferred (due to scaling of CP asymmetries with $\lambda_v \propto M_v^{-1/2}$)



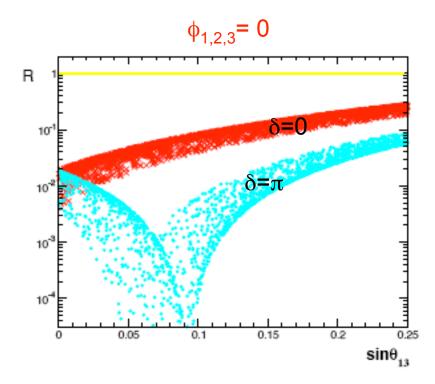
$$\blacksquare \quad \text{Impact on FCNC} \left[B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_\nu^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\min}; \phi_i)|^2 \times |c_{RL}^{(1-2)}|^2 \, I_{PS} \right]$$

100

- $\blacksquare \quad \text{Impact on FCNC} \left(B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_\nu^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\min}; \phi_i)|^2 \times |c_{RL}^{(1-2)}|^2 \, I_{PS} \right)$
- 1) $B_{i,LFV} \propto M_v^2 \Rightarrow \text{high values of } M_v \text{ increase FCNC rates.}$ If $\Lambda \sim 1\text{--}10 \text{ TeV}$, this scenario $\Rightarrow \text{signal for MEG}$ ($\mu \rightarrow \text{e } \gamma \otimes 10^{\text{--}13} \text{ level}$)

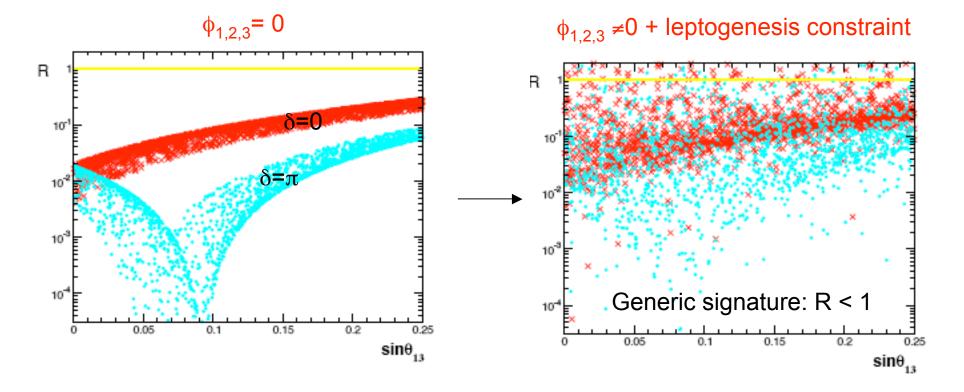
■ Impact on FCNC $\left(B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\min}; \phi_i)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}\right)$

- 1) $B_{i,LFV} \propto M_v^2 \Rightarrow \text{high values of } M_v \text{ increase FCNC rates.}$ If $\Lambda \sim 1\text{--}10 \text{ TeV}$, this scenario $\Rightarrow \text{signal for MEG}$ ($\mu \rightarrow \text{e } \gamma \otimes 10^{-13} \text{ level}$)
- 2) CPV phases tend to spoil PMNS-induced prediction for $R = \frac{B_{\mu \to e \gamma}}{B_{\tau \to \mu \gamma}}$

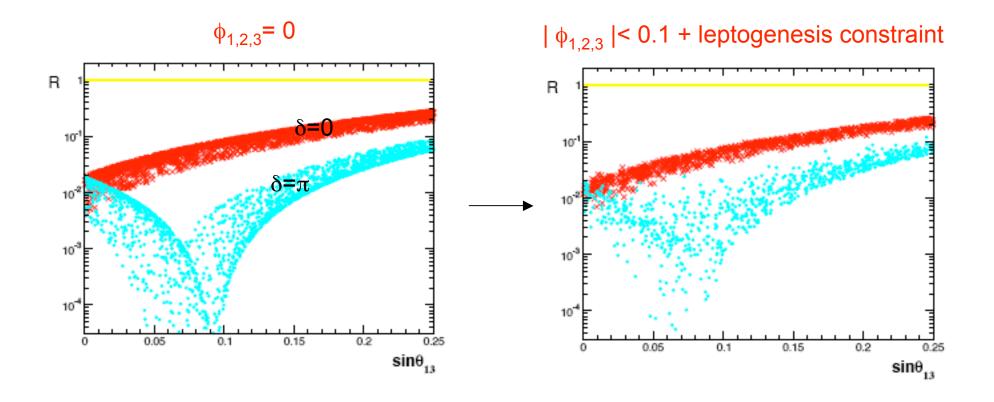


■ Impact on FCNC
$$\left(B_{\ell_i \to \ell_j \gamma} = \frac{v^2 M_{\nu}^2}{\Lambda^4} \times |b_{ij}(U_{\text{PMNS}}; m_{\min}; \phi_i)|^2 \times |c_{RL}^{(1-2)}|^2 I_{PS}\right)$$

- 1) $B_{i,LFV} \propto M_v^2 \Rightarrow \text{high values of } M_v \text{ increase FCNC rates.}$ If $\Lambda \sim 1\text{--}10 \text{ TeV}$, this scenario $\Rightarrow \text{signal for MEG}$ ($\mu \rightarrow \text{e } \gamma \otimes 10^{-13} \text{ level}$)
- 2) CPV phases tend to spoil PMNS-induced prediction for $R = \frac{B_{\mu \to e \gamma}}{B_{\tau \to \mu \gamma}}$



3) However there is a "small phase regime" ($M_v > 10^{14} \text{ GeV}$) with successful leptogenesis & typical PMNS-induced pattern



"Hot" recent developments and their impact on MFV-leptogenesis

Flavor Effects in Leptogenesis

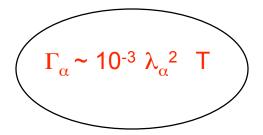
Abada, Davidson, Josse-Michaoux, Losada, Riotto '06

Nardi, Nir, Roulet, Racker '06

■ At T < T_{fl}, interactions mediated by Yukawa couplings come in equilibrium
 ⇒ project lepton asymmetry onto individual flavors

$$N_1 \rightarrow \ell_1 H^*$$
 $\ell_{\tau,\mu,e}$

$$T_{\tau} \sim 10^{12} \text{ GeV}$$
 $T_{u} \sim 10^{9} \text{ GeV}$



Flavor Effects in Leptogenesis

Abada, Davidson, Josse-Michaoux, Losada, Riotto '06

Nardi, Nir, Roulet, Racker '06

■ At T < T_{fl}, interactions mediated by Yukawa couplings come in equilibrium
 ⇒ project lepton asymmetry onto individual flavors

$$\frac{dN_{N_1}}{dz} = -D \left(N_{N_1} - N_{N_1}^{\text{eq}}\right)$$

$$\frac{dN_{N_1}}{dz} = \varepsilon_1 D \left(N_{N_1} - N_{N_1}^{\text{eq}}\right) - W_1^{\text{ID}} N_{B-L}$$

$$\frac{dN_{N_1}}{dz} = -D \left(N_{N_1} - N_{N_1}^{\text{eq}}\right)$$

$$\frac{dN_{N_1}}{dz} = -D \left(N_{N_1} - N_{N_1}^{\text{eq}}\right)$$

$$\frac{dN_{\Delta_{\alpha}}}{dz} = \varepsilon_{1\alpha} D \cdot \left(N_{N_1} - N_{N_1}^{\text{eq}}\right) - P_{1\alpha}^{0} W_1^{\text{ID}} N_{\Delta_{\alpha}}$$

M

Flavor Effects in Leptogenesis

Abada, Davidson, Josse-Michaoux, Losada, Riotto '06

Nardi, Nir, Roulet, Racker '06

■ At T < T_{fl}, interactions mediated by Yukawa couplings come in equilibrium
 ⇒ project lepton asymmetry onto individual flavors

$$\frac{dN_{N_1}}{dz} = -D \left(N_{N_1} - N_{N_1}^{\text{eq}} \right)
\frac{dN_{B-L}}{dz} = \varepsilon_1 D \left(N_{N_1} - N_{N_1}^{\text{eq}} \right) - W_1^{\text{ID}} N_{B-L}$$

$$\frac{dN_{N_1}}{dz} = -D \left(N_{N_1} - N_{N_1}^{\text{eq}} \right)
\frac{dN_{\Delta_{\alpha}}}{dz} = \varepsilon_{1\alpha} D \left(N_{N_1} - N_{N_1}^{\text{eq}} \right) - P_{1\alpha}^{0} W_1^{\text{ID}} N_{\Delta_{\alpha}}$$

- Key consequences:
 - CP asymmetries are sensitive to CPV phases of U_{PMNS}
 - Washout via inverse decays is less effective

M

Memory Effects in Leptogenesis

De Simone - Riotto '07

Quantum Boltzmann eqs: "collision" term depends on history of the system

$$\begin{array}{lcl} \frac{\partial n_{\mathcal{L}_i}(X)}{\partial t} & = & -\int d^3z \int_0^t dt_2 \operatorname{Tr} \left[\Sigma_{\ell_i}^>(X,z) G_{\ell_i}^<(z,X) - G_{\ell_i}^>(X,z) \Sigma_{\ell_i}^<(z,X) \right. \\ & & \left. + G_{\ell_i}^<(X,z) \Sigma_{\ell_i}^>(z,X) - \Sigma_{\ell_i}^<(X,z) G_{\ell_i}^>(z,X) \right]. \end{array}$$

Ŋ4

Memory Effects in Leptogenesis

De Simone - Riotto '07

Quantum Boltzmann eqs: "collision" term depends on history of the system

$$\begin{array}{lcl} \frac{\partial n_{\mathcal{L}_i}(X)}{\partial t} & = & -\int d^3z \int_0^t dt_z \operatorname{Tr} \left[\Sigma_{\ell_i}^>(X,z) G_{\ell_i}^<(z,X) - G_{\ell_i}^>(X,z) \Sigma_{\ell_i}^<(z,X) \right. \\ & & \left. + G_{\ell_i}^<(X,z) \Sigma_{\ell_i}^>(z,X) - \Sigma_{\ell_i}^<(X,z) G_{\ell_i}^>(z,X) \right]. \end{array}$$

- Important consequence:
 - CP asymmetries depend on z=M₁/T (time variable)

$$\varepsilon_{1}(z) = \varepsilon_{1}^{(0)} \left[2\sin^{2} \left(\frac{(M_{2} - M_{1})z^{2}}{4H(M_{1})} \right) - \frac{\Gamma_{2}}{M_{2} - M_{1}} \sin \left(\frac{(M_{2} - M_{1})z^{2}}{2H(M_{1})} \right) \right]$$

- Effect is important if $1/\Delta M_{12} > 1/\Gamma_N \sim 1/H (T=M_1)$

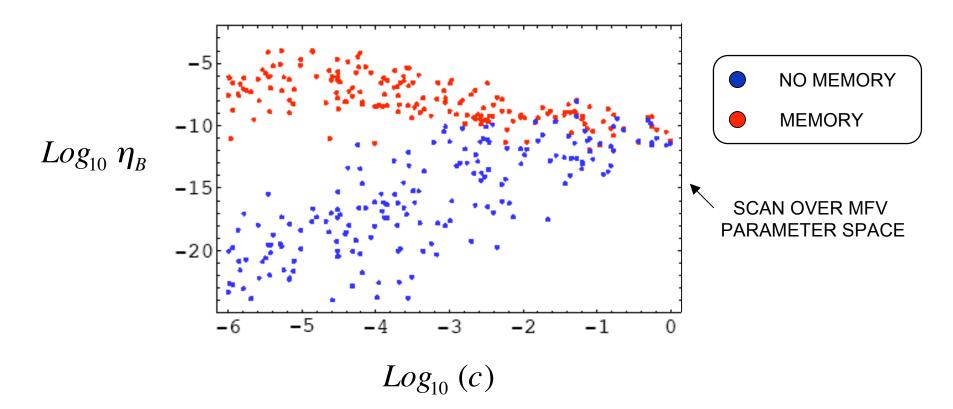
Νė

Impact on MFV-leptogenesis

VC-DeSimone-Isidori-Masina-Riotto, in progress

- Flavor effects imply need to study several T~M_R regimes:
 - 1. Unflavored regime: $M_R > 10^{12} \,\text{GeV}$

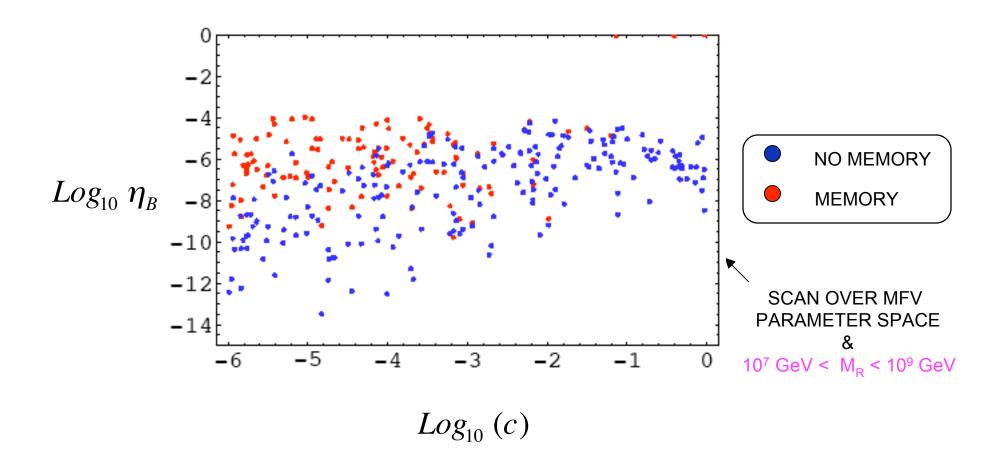
"Memory" effects are controlled by parameter "c" $\leftrightarrow \Delta M_R/\Gamma$



100

2. Fully flavored regime: $M_R < 10^9 \,\text{GeV}$

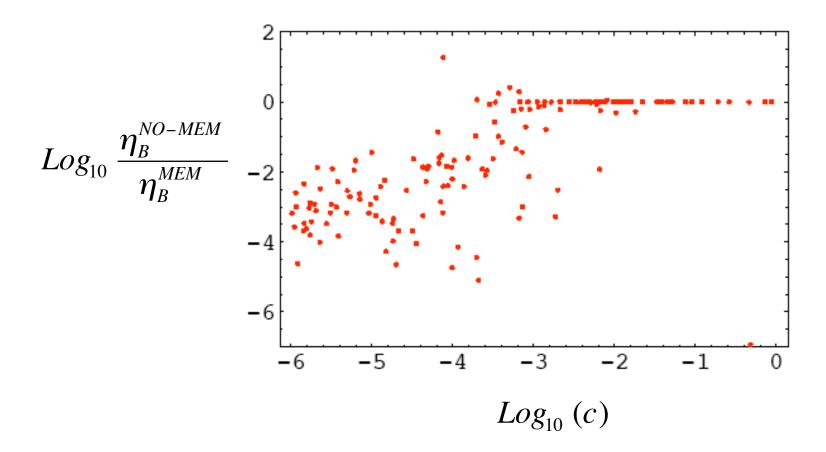
- Larger values of BAU (less washout)
- "Memory" effects again mainly controlled by "c" $\iff \Delta M_R/\Gamma$



100

2. Fully flavored regime: $M_R < 10^9 \,\text{GeV}$

- Larger values of BAU (less washout)
- "Memory" effects again mainly controlled by "c" $\iff \Delta M_R/\Gamma$



- Possibility of leptogenesis with exclusively low-energy CP violation

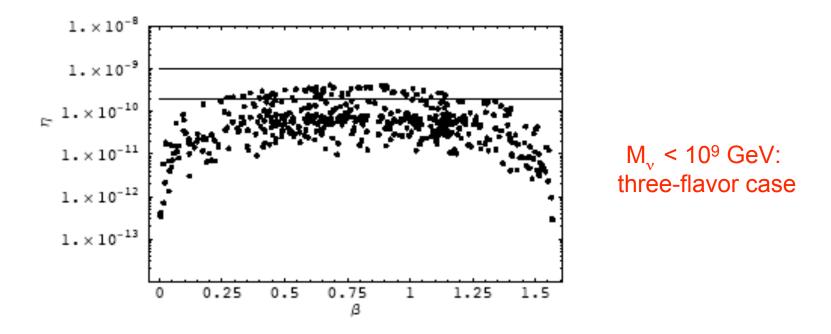


Figure 5: The baryon asymmetry η_B with the Majorana phase β being the only source of CP violation.

M

Summary

- The see-saw scenario provides a unified framework to account for the origin of neutrino masses, baryon asymmetry and lepton flavor violation. It is of great interest to study its low-energy footprints.
- Within the context of Minimal Flavor Violation with heavy v_R , correlations emerge among successful leptogenesis and low-energy observables:
 - Leptogenesis is viable, in principle and in practice, with moderate-sized phases ($|\phi_{1,2,3}| \ge 0.01$) and high R-handed scale ($M_v > 10^{12}$ GeV)
 - Implications for FCNC:
 - If $\Lambda \sim 1-10$ TeV, then $\mu \rightarrow e\gamma$ is well within the reach of MEG
 - For $M_v > 10^{14}$ GeV, FCNC pattern is fully determined by U_{PMNS} and Δm_v^2
- Flavor and memory produce in this scenario new effects currently under investigation

Additional Material

How does it work for quarks?

$$-G_{\mathrm{QF}} = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R} \text{ broken only by } \frac{\lambda_U}{\lambda_U} \sim (3,\overline{3},1) \text{ and } \frac{\lambda_D}{\lambda_D} \sim (3,1,\overline{3})$$

- Typical MFV operator mediating FCNC:

D'Ambrosio et al 2002

$$O_{F1} = H^{\dagger} \ \bar{D}_{R} \, \sigma^{\mu\nu} \left(\lambda_{D} \, \lambda_{U}^{\dagger} \lambda_{U}^{\dagger} \right) Q_{L} \ F_{\mu\nu} \longrightarrow \ \bar{d}_{R}^{i'} \, \sigma^{\mu\nu} \ m_{D}^{i} \Delta_{FC}^{ij} \ d_{L}^{j'} \ F_{\mu\nu}$$

$$(\Delta_{FC})_{ij} = (\lambda_U \lambda_U^\dagger)_{ij} \simeq \left(\frac{m_t}{v}\right)^2 \, V_{3i}^* \, V_{3j}$$
 Normalization Mixing pattern

- 1. FCNC suppression follows from Cabibbo hierarchy (despite $m_t >> m_{c,u}$) Flavor problem essentially "solved": $\Lambda \sim TeV$ is now allowed
- 2. Highly predictive (=testable) framework, relates various $d_i \rightarrow d_j$ transitions. Tool to investigate structure of flavor-breaking. Far from being verified.

MLFV: minimal field content

• $G_{\rm LF} = SU(3)_{L_L} \times SU(3)_{E_R}$ broken only by λ_e , g_{ν}

$$\mathcal{L}_{\mathrm{Sym.Br.}} = -\frac{\pmb{\lambda_e^{ij}}}{e} \, \bar{e}_R^i (H^\dagger L_L^j) - \frac{1}{2\Lambda_{\mathrm{LN}}} \, \underline{\pmb{g_\nu^{ij}}} (\bar{L}_L^{ci} \tau_2 H) (H^T \tau_2 L_L^j)$$

Formally invariant under
$$\begin{bmatrix} L_L \to V_L \, L_L \\ e_R \to V_R \, e_R \end{bmatrix} \text{ if } \begin{bmatrix} \lambda_e \to V_R \, \lambda_e V_L^\dagger \\ g_\nu \to V_L^* \, g_\nu V_L^\dagger \end{bmatrix}$$

$$\lambda_e \to V_R \, \lambda_e V_L^{\dagger}$$

$$g_{\nu} \to V_L^* \, g_{\nu} V_L^{\dagger}$$

Independent spurions in L_L space: $\lambda_e^\dagger \lambda_e$, $g_{\nu}^\dagger g_{\nu}$

MLFV: extended field content

• $G_{LF} = SU(3)_{L_L} \times SU(3)_{E_R} \times O(3)_{\nu_R}$ broken only by λ_e , λ_{ν}

$$\mathcal{L}_{\text{Sym.Br.}} = -\frac{\lambda_e^{ij}}{e^i} \bar{e}_R^i (H^{\dagger} L_L^j) + i \frac{\lambda_{\nu}^{ij}}{\nu} \bar{\nu}_R^i (H^T \tau_2 L_L^j) + \text{h.c.}$$

Formally invariant under
$$\begin{bmatrix} L_L \to V_L \, L_L \\ e_R \to V_R \, e_R \\ \nu_R \to O_\nu \, \nu_R \end{bmatrix} \text{ if } \begin{bmatrix} \lambda_e \to V_R \, \lambda_e V_L^\dagger \\ \lambda_\nu \to O_\nu \, \lambda_\nu V_L^\dagger \end{bmatrix}$$

Independent spurions in L_L space: $\lambda_e^{\dagger} \lambda_e$, $\lambda_{\nu}^{\dagger} \lambda_{\nu}$ [$g_{\nu}^{\dagger} g_{\nu} = (\lambda_{\nu}^{\dagger} \lambda_{\nu})^2$]